

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 5673-5676

Tetrahedron Letters

Synthesis of iodinated analogues of all *trans* retinoic acid (ATRA) for SPECT imaging

Haibing Li and Christophe Morin*

LEDSS-UMR 5616, Département de Chimie (ICMG-IFR 2607), Université Joseph Fourier-Grenoble-1, 38402 Saint Martin d'Heres, France

> Received 20 April 2004; revised 19 May 2004; accepted 19 May 2004 Available online 11 June 2004

Abstract—Two derivatives of all *trans* retinoic acid in which one of the methyl groups has been replaced by iodine have been prepared.

© 2004 Elsevier Ltd. All rights reserved.

A common situation met in the procurement of tracers for SPECT (Single Photon Emission Computed Tomography) medical imaging is that the introduction of a label onto a drug leads to a compound, which differs in its overall architecture from the parent molecule. However there are some cases in which it is conceivable to introduce the marker into a region of the molecule in a way, which is expected to have minimal adverse effects on its physicochemical properties, compared to those of the original molecule. ¹²³I is a γ -emitting radionucleide commonly used for SPECT and since iodine resembles a methyl group in terms of bulkiness and lipophilicity, the preparation of a derivative in which iodine would replace a methyl group present in the drug could be a fruitful approach in the design of SPECT-compatible tracers.

Retinoids are inducers of cell differentiation and apoptosis¹ and, more specifically, ATRA (all *trans* retinoic acid) (1) is used to induce remission of acute promyelocytic leukaemia (APL) in current oncological practice.^{2,3} Since there is a need for imaging of ATRA uptake, the synthesis of derivatives suitable for SPECT has been considered; in light of the above considerations, replacement by iodine of one of the ATRA methyl groups has been favoured⁴ and the preparation of two such derivatives is presented.

The preparation (see Scheme 1) of the first of these, 9-iodo-9-nor-ATRA(2), was planned by assembly of C10+C4+C5 fragments:

The C4 iodinated partner 3^5 was obtained after desymmetrization⁶ of but-2-yne-1,4-diol; this was followed by formation of an alanate,⁷ which was reacted with molecular iodine⁸ to get 3; since the stereochemical outcome of this process is controlled by the adjacent hydroxymethyl group, the *Z* configuration was assigned.⁹ Oxidation of 3 was performed efficiently with IBX¹⁰ and the intermediate aldehyde¹¹ was condensed with phosphonate 4 under the conditions found suitable for such Wadsworth–Emmons–Horner condensations.¹² This afforded 5, the configuration of which was assigned

Keywords: Iodine; Retinoic; Cross-coupling; Labelling.

^{*} Corresponding author. Fax: +33-476-514-927; e-mail: Christophe. Morin@ujf-grenoble.fr

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.05.103

Scheme 1. Reagents and conditions: (a) (1) TBDMSiCl, Et₃N, DMAP—Ref. 6, (2) Red-Al, then I₂ (91%). (b) (1) IBX (95%); *E*-(EtO)₂P(O)CH₂-C(CH₃)=CHCOOEt (4), LDA, DMPU (94%). (c) TBAF. (d) (1) HF-py (95%); (2) Swern (92%). (e) NaBH₄-CeCl₃·7H₂O, CH₃OH, 4°C (97%). (f) Ref 15. (g) 9, -70°C, *n*-BuLi, then 7 (93%). (h) 1.75 M NaOH, 1:1 H₂O/EtOH), 50 °C, 45 min (98%).

Scheme 2. Reagents and conditions: (a) (1) *n*-BuLi, TMSiCl; (2) *n*-BuLi, ClCOOEt; (3) Lil, AcOH (76%). (b) Swern (88%). (c) (1) CH₂=CHMgBr; (2) PPh₃·HBr—Ref 18. (d) (1) LDA, DMPU, then 14 (74%). (e) Pd(PPh₃)₄, Me₆Sn₂, DIEA (55%). (f) NaOH (1.75 M in 1:1 H₂O/EtOH), 50 °C, 45 min. (g) I₂/CH₂Cl₂ (63% from 17).

as *E* from the large coupling constant observed for the newly introduced vinylic protons.¹³ At this stage, removal of the silyl ether using tetrabutylammonium fluoride led to loss of iodine (to give alkyne **6**) but the use of milder conditions (HF-py) allowed regeneration of the hydroxyl group; this was followed by Swern oxidation to get **7**.¹⁴ The β -cyclogeranyl partner **9** was conventionally obtained¹⁵ from β -cyclogeraniol **8**, which, in this work, was obtained by NaBH₄/ CeCl₃·7H₂O reduction of β -cyclocitral thus improving literature procedures.¹⁶ Condensation of the ylide derived from **9** with freshly prepared **7** afforded ester **10**, the saponification of which led to 9-iodo-9-nor-retinoic acid, **2**.¹⁷

To get the 13-iodo-13-nor-ATRA isomer (11) the assembly of a C15 fragment¹⁸ with 13¹⁹ was planned (Scheme 2). The iodinated derivative 12 was prepared in three sequential steps from propargylic alcohol by (1) in situ transient protection of the hydroxyl group,²⁰ (2) formation of the acetylide followed by its quenching with ethyl chloroformate and (3) 1-4 addition of lithium iodide to the conjugated ester. The Z stereochemistry of the product 12 can be deduced from mechanistic considerations²¹ but it has been proven by observation of an NOE effect between the vinylic proton and the methylene group.²² Oxidation of **12** by manganese dioxide¹⁹ gave a mixture of E/Z aldehydes as was the case when IBX was used; however Swern oxidation gave pure 13. This sensitive aldehyde was condensed with the ylide derived from 14,¹⁸ which gave ester 15.²³ In contrast with results for the vinylogous 9-iodo series (i.e., saponification of 10), cleavage of the ester group of 15 proved troublesome: whether acidic or basic conditions were used, the only product, which could be characterized was acetylenic derivative 16.24 This situation could be overcome by conversion of 15 to tin derivative 17^{25} whose saponification to 18 could be achieved satisfactorily. Iodolysis of the tin-carbon bond then gave 13iodo-13-nor-ATRA, 11.17 In view of the lability of the carbon-iodine bond in this compound however (particularly under basic conditions), 9-iodo-9-nor-ATRA 2 would appear to be a more suitable candidate for SPECT imaging.²⁶

References and notes

- Simoni, D.; Rondanin, R.; Baruchello, R.; Roberti, M.; Rossi, M.; Grimaudo, S.; D'Alessandro, N.; Invidiata, F. P.; Tolomeo, M. *Pure Appl. Chem.* 2001, *73*, 1437.
- 2. Degos, L.; Wang, Z. Y. Oncogene 2001, 20, 7140.
- Cassinat, B.; Chevert, S.; Zassadowski, F.; Balitrand, N.; Guillemot, I.; Menot, L.; Degos, L.; Fenaux, P.; Chomienne, C. *Blood* 2001, 98, 2862.
- 4. For a derivative of 9-*cis* retinoic acid in which iodine substitutes a vinylic hydrogen see: Klaus, M.; Lovey, A. J.; Mohr, P.; Rosenberg, M. Eur. Patent Appl. No. 728742, 1996.
- This compound has recently been obtained by a freeradical approach; see: Commeiras, L.; Santelli, M.; Parrain, J.-L. *Tetrahedron Lett.* 2003, 44, 2311.
- MacMahon, S.; Fong, R.; Baran, P. S.; Safonov, I.; Wilson, S. R.; Schuster, D. I. J. Org. Chem. 2001, 66, 5449.

- Red-Al has been shown to be the reagent of choice for this transformation: Denmark, S. E.; Jones, T. K. J. Org. Chem. 1982, 47, 4595; for related examples see: Blanchette, M. A.; Malamas, M. S.; Nantz, M. H.; Roberts, J. C.; Somfai, P.; Whritenour, D. C.; Masamune, S. J. Org. Chem. 1989, 54, 2817; Denis, R. C.; Gravel, D. Tetrahedron Lett. 1994, 35, 4531.
- Corey, E. J.; Katzenellenbogen, J. A.; Posner, G. H. J. Am. Chem. Soc. 1967, 89, 4245.
- 9. The Z configuration of **3** has been secured by its conversion to nakienone B. See: Pour, M.; Negishi, E.-I. *Tetrahedron Lett.* **1996**, *37*, 4679.
- 10. More, J. D.; Finney, N. S. Org. Lett. 2002, 4, 3001.
- This aldehyde (¹H NMR, 200 MHz, CDCl₃, δ: -0.10 (s, 6H, SiCH₃), 0.92 (s, 9H, SiC(CH₃)₃), 4.42 (d, J = 2.1 Hz, 2H, H-4), 6.69 (dt, J = 6.5 Hz, J = 2.1 Hz, 1H, H-2), 9.67 (d, J = 6.5 Hz, 1H, H-1). ¹³C NMR (75 MHz, CDCl₃) δ: -5.7 (SiCH₃), 18.2 (SiC(CH₃)₃), 26.7 (C(CH₃)₃), 72.3 (C-4), 128.8 (C-3), 129.1(C-2), 196.5 (C-1) can be purified by column chromatography but should be freshly prepared before use.
- 12. Mata, E. G.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1995, 785.
- 13. 5: ¹H NMR (300 MHz, CDCl₃) δ : -0.10 (s, 6H, SiCH₃), 0.93 (s, 9H, SiC(CH₃)₃), 1.28 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 2.34 (d, J = 1.1 Hz, 2H, CH₃-3), 4.12 (q, J = 7.1 Hz, 2H, OCH₂CH₃), 4.35 (s, 2H, H-8), 5.83 (s, 1H, H-2), 6.41 (d, J = 14.7 Hz, 1H, H-4), 6.66 (m, 2H, H-5, H-6). ¹³C NMR (75 MHz, CDCl₃) δ : -5.3 (Si-CH₃), 13.7 (CH₃), 14.3 (CH₃), 18.3 (SiC(CH₃)₃), 25.8 (C(CH₃)₃), 59.8 (OCH₂CH₃), 71.7 (C-8), 111.7 (C-7), 120.6 (C-2), 131.1, 135.1, 138.8 (C-4, C-5, C-6), 151.7 (C-3), 166.8 (C-1).
- 14. In contrast to oxidation of 3, the use of IBX resulted here in configurational scrambling as a 1:1.8 E/Z mixture was detected.
- Dawson, M. I.; Hobbs, P. D.; Chan, R. L.-S.; Chao, W.-R. J. Med. Chem. 1981, 24, 1214.
- Pommer, H. Angew. Chem. 1960, 72, 811; Büchi, G.; White, G. D. J. Am. Chem. Soc. 1964, 86, 2884; Behr, D.; Wahlberg, I.; Nishida, T.; Enzell, C. R. Acta Chem. Scand. 1977, 31B, 793; Crombie, B. S.; Smith, C.; Varnavas, C. Z.; Wallace, T. W. J. Chem. Soc., Perkin Trans. 1 2001, 206.
- 17. NMR assignments of ATRA, for ¹H see: Perly, B.; Pappalardo, G. C.; Klaus, M.; Montoneri, E. Z. Naturforsch. 1988, 43b, 1072; for 13C see: Bernard, M.; Ford, W. T.; Nelson, E. C. J. Org. Chem. 1983, 48, 3164; 2: ¹H NMR (300 MHz, CDCl₃) δ: 1.10 (s, 6H, CH₃-1), 1.4-1.7 (m, 4H, H-2, H-3), 1.73 (s, 3H, CH₃-5), 2.04 (m, 2H, H-4), 2.39 (large s, 3H, CH₃-13), 5.85 (s, H-14), 5.83 and 6.64 (AB system, J = 15 Hz, H-7, H-8), 6.46 (d, J = 11 Hz, H₁₀), 6.48 (d, J = 15 Hz, H₁₂), 7.03 (dd, J = 11 Hz, J = 15 Hz, 1H, H₁₁). ¹³C NMR (75 MHz, 22 M Hz) CDCl₃) *b*: 14.0 (CH₃-13), 19.1 (C-3), 21.8 (C-5), 28.9 (CH₃-5), 33.3 (C-4), 34.4 (C-1), 39.6 (C-2), 112.4 (C-9), 119.2 (C-14), 132.1, 136.9 (C-5, C-6), 134.2, 135.2, 137.7, 138.3, 139.1 (C-7, C-8, C-10, C-11, C-12), 154.5 (C-13), 171.2 (C-15). 11: ¹H NMR (300 MHz, CDCl₃) δ: 1.04 (s, 6H, CH₃-1), 1.47 (m, 2H, H-2), 1.61 (m, 2H, H-3), 1.72 (s, 3H, CH₃-5), 2.04 (m+s, 5H, H-4, CH₃-5), 6.20, 6.37 (AB system, J = 15.7 Hz, H-7, H-8), 6.39 (m, 1H), 6.62 (large s, 1H) and 7.13–7.26 (m, 2H): (H-10, H-11, H-12, H-14). ¹³C NMR (75 MHz, CDCl₃) δ 13.1 (CH₃-9), 19.2 (C-3), 21.8 (CH₃-5), 29.0 (CH₃-1), 33.2 (C-4), 34.3 (C-1), 39.7 (C-2), 124.7 (C-13), 127.0, 128.6, 128.7, 130.5, 145.2 (C-7, C-10, C-11, C-12, C-14), 130.9 (C-5), 137.0 (C-8), 137.6 (C-6), 143.6 (C-9), 168.0 (C-15).
- Curley, R. W., Jr.; DeLuca, H. F. J. Org. Chem. 1984, 49, 1941.

- 19. Shinada, T.; Yoshihara, K. Chem. Pharm. Bull. 1996, 44, 264.
- 20. O-TMS propargyl alcohol is *very* moisture sensitive and was directly used after in situ formation that is without isolation. For use of a *tert*-butyldimethylsilyl ether, see: Piers, E.; Chong, M.; Morton, H. E. *Tetrahedron* **1989**, *45*, 363.
- 21. Ma, S.; Lu, X. J. Chem. Soc., Chem. Commun. 1990, 1643.
- 22. Shinada, T.; Sekiya, N.; Boojkova, N.; Yoshihara, K. *Tetrahedron* **1999**, *55*, 3675.
- 23. Under those conditions, NMR analysis of the crude material showed 92% *E* configurational purity; note that a

6 to 4:1 E/Z ratio was observed after reaction with the ylide derived from 9 (see Ref. 19).

- For the elimination of iodine in such a conjugated ester, see: Brisdon, B. J.; Brown, D. W.; Willis, C. R.; Drew, M. G. B. J. Chem. Soc., Dalton Trans. 1986, 2405.
- 25. The less toxic bis(tributyl)ditin was ineffective for this transformation.
- 26. To enable the preparation of material with high specific activity, **2** was converted to the corresponding trimethyltin derivative (Me₃Sn)₂/Pd (0), 73%); **2** could be regenerated (90%) after reaction with iodine.